Photo-induced tautomerisation of methyltrioxorhenium(vII): the intermediate in olefin metathesis?

Leigh J. Morris,^{*a*} Anthony J. Downs,^{*a*} Tim M. Greene,^{*a*} G. Sean McGrady,^{*b*} Wolfgang A. Herrmann,^{*c*} Peter Sirsch,^{*c*} Odd Gropen^{*d*} and Wolfgang Scherer^{*d*}

^a Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, UK OX1 3QR. E-mail: tony.downs@chem.ox.ac.uk

^b Department of Chemistry, King's College London, Strand, London, UK WC2R 2LS

^c Anorganisch-chemisches Institut, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching bei München, Germany

^d Institute of Mathematical and Physical Sciences, University of Tromsø, N-9037 Tromsø, Norway

Received (in Basel, Switzerland) 28th September 1999, Accepted 1st December 1999

Matrix-isolated [CH₃ReO₃] tautomerises to [H₂C=Re(O)₂OH] under the influence of UV light; the carbene has been characterised in its normal and ²H- and ¹³C-enriched isotopic forms by its IR spectrum with results well replicated by quantum chemical calculations.

Since methyltrioxorhenium(vII), [CH₃ReO₃] 1, was first described, its rôle in promoting and catalysing numerous organic reactions has been explored in detail.^{1,2} In fact, **1** is probably the most widely active organometallic catalyst reported to date. This activity encompasses two general areas: (i) oxidation reactions (including olefin epoxidation, Baever-Villiger and aromatic oxidation);2-5 and (ii) olefin isomerisation and metathesis.⁶ The peroxo derivatives of **1** active in many reactions of type (i) have been isolated and characterised both structurally and spectroscopically.⁷ By contrast, the species responsible for catalytic activity of type (ii) have eluded direct detection, although a tautomer of the form $[H_2C=Re(O)_2OH]$ 2, has long been presumed to be the active form of $1.^{2,8}$ There are numerous reports of rhenium-carbon multiple bonds in the literature generally, but not exclusively, involving rhenium in formal oxidation states <+7.8,9

Photolysis of **1** in solution appears to result in homolysis of the Re–C bond.¹⁰ Our studies reveal, however, that the matrixisolated molecule exhibits altogether different behaviour, initially tautomerising to the previously unknown carbene derivative **2** under the influence of UV light at wavelengths near 254 nm (Scheme 1). Tautomer **2** is also photolabile, broad-band UV–VIS irradiation ($\lambda = 200$ –800 nm) causing it to decay to a product containing an Re–CO fragment, **3**, possibly [H₂Re(O)(OH)CO].

Exposure of **1** isolated in an Ar matrix at 14 K to UV radiation with $\lambda = ca$. 254 nm for several minutes results in the decay of the IR absorptions due to **1** and the simultaneous appearance and growth of new absorptions apparently due to a single product **2** (Fig. 1). Irradiation of the matrix with broad-band UV–VIS light ($\lambda = 200-800$ nm) was observed to cause the evolution from **2** of at least one further product **3** which could not be conclusively identified by its IR spectrum. The IR bands identified on the evidence of their growth-decay patterns enable **2** to be characterised as [H₂C=Re(O)₂OH], the conclusions being underpinned (i) by the observed effects of ²H- and ¹³C-

enrichment of the products derived from the species [CD₃ReO₃] $1-d_3$, and $[{}^{13}CH_3ReO_3] 1-{}^{13}c$, (ii) by parallels with the spectra of related carbene and Re=O derivatives, e.g. CoCH211 and ReO₂F₃,¹² and (iii) by comparisons with the results of Density Functional Theory (DFT) calculations. (Calculations were carried out in Gaussian 9813 with geometries optimised at the BPW91/LANL2DZ level of theory; standard 6-31G(d,p) basis sets were used for C, O and H, whilst the Re basis set was augmented with an additional f-type polarisation function.) Prominent among its IR absorptions were those at 3650.0, 992.2, 963.3 and 668.4 cm^{-1} which are identifiable by their frequencies, intensities and responses to ²H- and ¹³C-enrichment with the modes v(O-H), $v_s(Re=O)$, $v_{as}(Re=O)$ and v(Re-OH), respectively. The presence of the Re=CH₂ unit is signalled by bands at 3079.6, 2985.8, 1320.9, 778.8, 756.4 and 627.9 cm^{-1} which we associate with the modes detailed in Table 1; each assignment is attested by analogy with the corresponding mode of CoCH2¹¹ and by the ²H and ¹³C isotopic shifts, although the description of the motion is sometimes less than exact. The spectrum is well simulated by a scaled force field computed for 2 on the basis of DFT calculations (Table 1), the 36 frequencies measured for 2, $2 - d_3$ and 2 - 13c being matched with an r.m.s. deviation of only 1.66%. It is also evident that mixing of the v(Re=C), $\rho(\text{CH}_2)$ and $\delta(\text{OH})$ motions complicates the interpretation of the spectrum in the region $600-800 \text{ cm}^{-1}$, preventing the identification of any one feature with the v(Re=C) mode. The relative intensities of the bands due to the well defined modes v_{as} (Re=O) and v_s (Re=O) imply an O=Re=O angle in the order of 116°, in good agreement with the optimum geometry computed for 2.

Similar experiments with $[CH_2DReO_3]$ **1**- d_1 give rise not only to $[H_2C=Re(O)_2OD]$, but also to the isotopomer

Fig. 1 (a) IR spectrum of [CH₃ReO₃] **1** isolated in an argon matrix at 14 K; (b) IR spectrum showing the effect of irradiation at $\lambda = 254$ nm for 15 min (\downarrow indicates a feature associated with [H₂C=Re(O)₂OH] **2**); and (c) the spectrum of **2** based on the results of DFT calculations.

Table 1 Observed and calculated fundamental vibrational frequencies for 2, $2^{-13}c$, and 2^{-d_3} under C_s symmetry. Observed and calculated intensities are in parentheses^{*a*}

H ₂ ¹² CReO ₂ (OH)		H ₂ ¹³ CReO ₂ (OH)		$D_2^{12}CReO_2(OD)$		
Obs.	Calc. ^b	Obs.	Calc. ^b	Obs.	Calc. ^b	Description of mode
3650.0 (100)	3669.6 (87)	3650.4 (100)	3669.6 (87)	2694.2 (73)	2672.3 (63)	<i>v</i> (O–H)
2985.8 (3)	2994.4 (5)	2980.2 (4)	2989.0 (5)	2195.1 (5)	2171.4 (6)	$v_{\rm s}({\rm CH}_2)$
1320.9 (2)	1295.0 (5)	1311.8 (2)	1286.7 (5)	1009.9 (2)	1018.8 (6)	$\delta(CH_2)$
992.2 (25)	988.4 (30)	991.9 (26)	988.3 (30)	992.2 (31)	987.1 (42)	$v_{\rm s}({\rm ReO}_2)$
799.2 (2)	815.4 (8)	798.7 (3)	812.4 (9)	622.6 (3)	631.0 (3)	
778.8 (34)	792.0 (10)	768.3 (53)	770.4 (14)	578.9 (43)	556.8 (81)	δ (O–H) + ρ (CH ₂)
756.4 (30)	741.9 (73)	739.6 (19)	736.5 (67)	685.9 (10)	698.2 (6)	+ v(Re=C) + v(Re=OH)
668.4 (83)	664.2 (100)	668.8 (87)	664.2 (100)	660.0 (69)	664.7 (75)	
с	286.4 (2)	с	286.4 (2)	с	286.0 (2)	ReO ₂ wag
С	255.6(1)	с	255.6 (1)	С	252.7 (2)	ReO ₂ scissor
с	239.8 (3)	С	239.8 (3)	С	217.6 (3)	δ(CReOH)
3079.6 (3)	3091.9 (0.6)	3068.4 (1)	3079.5 (0.6)	2315.2 (1)	2299.0 (0.3)	$V_{\rm as}(\rm CH_2)$
963.3 (64)	967.2 (81)	963.4 (80)	967.1 (81)	961.8 (100)	965.0 (100)	$V_{\rm as}({\rm ReO}_2)$
627.9 (3)	644.2 (1)	625.7 (5)	639.3 (2)	500.2 (2)	504.1 (0.3)	CH ₂ scissor
c	526.4 (0.2)	с	525.8 (0.2)	с	386.1 (0.01)	CH_2 wag
321.2 (33)	315.9 (42)	320.7 (38)	315.2 (43)	239.3 (19)	253.4 (6)	δ (O–H)
с	266.8 (15)	с	266.8 (15)	c	237.3 (15)	$\delta(CReO_2)$
С	233.2 (0.03)	С	233.2 (0.03)	С	208.5 (16)	$d(CReO_2)$

^{*a*} Frequencies in cm^{-1} ; all intensities normalised to that of the most intense band set equal to 100 (in parentheses). ^{*b*} Calculated frequency scaled by a factor of 0.9740. The r.m.s. deviation between observed and scaled calculated frequencies is 1.66%. ^{*c*} Indicates a feature too weak to be observed.

[H(D)C=Re(O)₂OH] **2**-*d*₁. Here the *v*(C–H) fundamental is isolated from all other modes in the molecule and so gives access, in principle, to relatively precise estimates of the dimensions of the CH₂ unit.¹⁴ The measured value of *v*^{is}(C–H) (3035.4 cm⁻¹), taken together with *v*(¹²C–H), *v*(¹³C–H) and *v*(¹²C–D) data for the other isotopomers, affords values that tally with the results of the DFT optimisations given in parentheses: $r_0 = 1.088$ Å ($r_e = 1.099$ Å), ∠HCH = 119 ± 4° (∠_eHCH = 115.8°).

Although 2 was formed almost exclusively when matrixisolated 1 was photolysed at wavelengths near 254 nm, exposure to broad-band UV-VIS light gave rise to a secondary change. The sole detectable product 3 formed from 2 under these conditions, but always in the presence of an abundance of 1 and 2, could be identified by a single IR band at 2051.4 cm^{-1} . Assignment to the v(C-O) mode of an Re-CO moiety is strongly urged by a minimal change of frequency when 3 is formed from $1-d_3$ or $1-d_1$ but by a shift to 2003.8 cm⁻¹ when it is formed from $1^{-13}c$. The circumstances preclude positive identification, but a possible candidate for 3 is the novel rhenium(v) compound [H2Re(CO)(O)OH] formed by photoisomerisation of [H₂C=Re(O)₂OH] in a change that would parallel the conversion of [H2COSi] to [H2Si:CO].15 DFT calculations provide some support for [H2Re(CO)(O)OH], finding a potential energy minimum 126 kJ mol⁻¹ above that of $[H_2C=Re(O)_2OH]$ with a structure approximating to a squarebased pyramid having the unique oxide ligand at the apex, and a calculated v(C-O) frequency of 2040 cm⁻¹ (¹²C/¹³C shift = 44.5 cm⁻¹).

[CH₃ReO₃] is active in olefin metathesis only when activated by a co-catalyst (S₄N₄/AlCl₃), or when supported on silica or alumina.⁸ DFT calculations indicate that **2** lies *ca*. 89 kJ mol⁻¹ higher in energy than **1**, and hence is inaccessible under normal thermal conditions. Model calculations on [CH₃ReO₂{(η^2 -OSiH₂)₂O}] **4**, the product formed by condensation of [CH₃ReO₃] with disilanol ([H₂Si(OH)]₂O), show the tautomeric H-atom transfer to occur preferentially to an Re–O–Si bridging oxygen atom rather than to an Re=O unit. The resulting carbene species [H₂C=ReO₂{(η^2 -OSiH₂)(O)(SiH₂OH)}] **5** is effectively stabilised by *ca*. 48 kJ mol⁻¹ relative to complex **4**. This alternative H-atom transfer to the Re–O–Si bridge would seem to be a more realistic mechanism for carbene formation on supported $[CH_3ReO_3]$.

Notes and references

- 1 W. A. Herrmann, J. Organomet. Chem., 1995, 500, 149.
- 2 C. C. Romão, F. E. Kühn and W. A. Herrmann, *Chem. Rev.*, 1997, 97, 3197.
- 3 W. A. Herrmann, R. W. Fischer and D. W. Marz, *Angew. Chem., Int. Ed. Engl.*, 1991, **30**, 1638.
- 4 W. A. Herrmann, R. W. Fischer and J. D. G. Correira, *J. Mol. Catal.*, 1994, **94**, 213.
- 5 R. A. Sheldon, Top. Curr. Chem., 1993, 164, 21.
- 6 W. A. Herrmann, W. Wagner, U. N. Flessner, U. Volkhardt and H. Komber, *Angew. Chem., Int. Ed. Engl.*, 1991, **30**, 1636.
- 7 A. M. Al-Ajlouni and J. H. Espenson, J. Org. Chem., 1996, 61, 3969;
 M. M. Abu-Omar and J. H. Espenson, Organometallics, 1996, 15, 3543.
- 8 D. M. Hoffman, in *Comprehensive Organometallic Chemistry II*, ed. C. P. Casey, Pergamon, Oxford, 1995, vol. 6, p. 231.
- 9 J. M. O'Connor, in *Comprehensive Organometallic Chemistry II*, ed. C. P. Casey, Pergamon, Oxford, 1995, vol. 6, p. 200.
- 10 H. Kunkely, T. Türk, C. Teixeira, C. de Meric de Bellefon, W. A. Herrmann and A. Vogler, *Organometallics*, 1991, **10**, 2090.
- 11 W. E. Billups, S.-C. Chang, R. H. Hauge and J. L. Margrave, J. Am. Chem. Soc., 1995, 117, 1387.
- 12 I. R. Beattie, R. A. Crocombe and J. S. Ogden, J. Chem. Soc., Dalton Trans., 1977, 1481; W. J. Casteel Jr., D. A. Dixon, H. P. A. Mercier and G. J. Schrobilgen, Inorg. Chem., 1996, 35, 4310.
- 13 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Lui, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian 98, Revision A.3, Gaussian Inc., Pittsburgh PA, 1998.
- 14 D. C. McKean, Chem. Soc. Rev., 1978, 7, 399; Croat. Chem. Acta, 1988, 61, 447.
- 15 G. Maier, H. P. Reisenauer and H. Egenolf, Organometallics, 1999, 18, 2155.

Communication a907908d